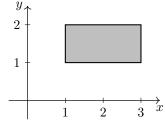
Soluzioni delle Esercitazioni III – 07-11/10/2024

A. Geometria analitica

▶ Sottoinsiemi del piano come prodotti cartesiani

1.
$$R = [1, 3] \times [1, 2]$$
.

La scrittura significa il prodotto cartesiano dei due intervalli [1,3] e [1,2], cioè l'insieme delle coppie (x,y) che hanno la x nel primo intervallo e la y nel secondo. Si tratta del rettangolo di vertici (1,1), (3,1), (3,2), (1,2), rappresentato qui a fianco. Il bordo del rettangolo fa tutto parte dell'insieme, dato che le parentesi sono tutte quadrate.

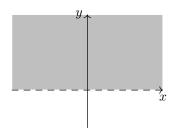


2. $A = [0, +\infty) \times \mathbb{R}$.

Si tratta del prodotto cartesiano dell'intervallo $[0, +\infty)$ per tutto \mathbb{R} , cioè l'insieme delle coppie (x,y) che hanno la x nel primo intervallo e la y in \mathbb{R} . Sono quindi i punti che stanno a destra dell'asse verticale. Il bordo dell'insieme, cioè l'asse verticale, è compreso, dato che i punti con ascissa 0 sono coppie del prodotto cartesiano (la parentesi in 0 è quadrata).

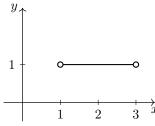
3. $B = \mathbb{R} \times (0, +\infty)$.

Si tratta del prodotto cartesiano di \mathbb{R} per l'intervallo $(0,+\infty)$, cioè l'insieme delle coppie (x,y) che hanno la x reale qualunque e la y in $(0,+\infty)$. Sono quindi i punti che stanno al di sopra dell'asse orizzontale. Il bordo dell'insieme, cioè l'asse orizzontale, non è compreso, dato che i punti con ordinata 0 vengono esclusi dal prodotto cartesiano (la parentesi in 0 è tonda).



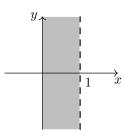
4. $S = (1,3) \times \{1\}.$

Si tratta del prodotto cartesiano dell'intervallo (1,3) per l'insieme formato dal solo elemento 1, cioè l'insieme delle coppie (x,y) che hanno la $x \in (1,3)$ e la y uguale a 1. Sono quindi i punti del segmento di estremi (1,1) e (3,1). Gli estremi del segmento non fanno parte dell'insieme dato che l'intervallo (1,3) non comprende gli estremi stessi.



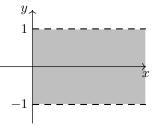
5. $C = [0,1) \times \mathbb{R}$.

Si tratta delle coppie di reali in cui la prima componente sta nell'intervallo [0,1) e la seconda in tutto $\mathbb R$. È una striscia di piano, che contiene il bordo di sinistra ma non quello di destra.



6. $[0, +\infty) \times (-1, 1)$.

Si tratta delle coppie di reali in cui la prima componente è non negativa e la seconda sta nell'intervallo (-1,1). È una "semistriscia" di piano, che contiene il bordo di sinistra ma non i bordi superiore ed inferiore.



▶ Qui si tratta di scrivere, se possibile, un insieme come prodotto cartesiano.

7. Il primo quadrante è definito dai punti (x, y) che hanno entrambe le componenti maggiori o uguali a zero. Formalmente possiamo scrivere

$$Q_1 = \{(x, y) \in \mathbb{R}^2 : x, y \ge 0\}.$$

Si può equivalentemente scrivere, usando il prodotto cartesiano,

$$Q_1 = [0, +\infty) \times [0, +\infty).$$

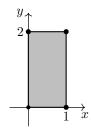
8. La retta di equazione x=1 è formata dai punti che hanno la prima componente (la x) uguale ad 1 e la seconda (la y) libera, cioè che può assumere un qualunque valore reale. Quindi possiamo scrivere che la retta è l'insieme dei punti del prodotto cartesiano

$$\{1\} \times \mathbb{R}$$
.

9. La retta di equazione y = -1 è formata dai punti che hanno la prima componente (la x) libera e la seconda (la y) uguale a -1. Quindi possiamo scrivere che la retta è l'insieme dei punti del prodotto cartesiano

$$\mathbb{R} \times \{-1\}.$$

- 10. La retta di equazione y=x non può essere scritta sotto forma di prodotto cartesiano. Per rendersi conto di questo semplice fatto basta pensare che per ottenere i punti della retta abbiamo bisogno sia di x sia di y che variano in tutto \mathbb{R} . Ma il prodotto cartesiano di $\mathbb{R} \times \mathbb{R}$ è tutto il piano \mathbb{R}^2 e non solo la retta.
- 11. Il rettangolo di vertici (0,0), (1,0), (1,2), (0,2) si può invece facilmente scrivere come prodotto cartesiano, esattamente come



$$[0,1] \times [0,2].$$

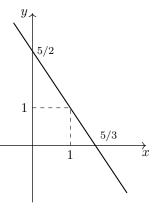
12. Il triangolo di vertici (0,0), (1,0), (0,1) non può essere scritto come prodotto cartesiano. Basta osservare che per ottenere i punti del triangolo abbiamo bisogno di x che variano tra 0 e 1 e di y che variano ugualmente tra 0 e 1. Ma con il prodotto cartesiano dei due intervalli [0,1] otteniamo il quadrato con vertici nei punti assegnati (oltre al vertice (1,1)) e non solo il triangolo.

▶ Rette

13. Per disegnare nel piano una retta di equazione data vi sono vari modi possibili.

Ne vediamo un paio. La nostra retta ha equazione 3x+2y-5=0. Un modo molto semplice è questo: si trovano due punti che soddisfano l'equazione; i due punti stanno quindi sulla retta. Si disegnano i due punti nel piano e si traccia la retta che passa per i due punti. Noti risultati di geometria garantiscono che la retta è proprio quella ottenuta. Nel nostro caso ad esempio potremmo dire che i due punti (1,1) e (3,-2) soddisfano l'equazione e quindi disegnare facilmente la retta per questi due punti.

Un altro modo è questo: scrivere l'equazione esplicita della retta, esplicitando ad esempio la y: si ottiene $y=\frac{5-3x}{2}$, cioè $y=\frac{5}{2}-\frac{3}{2}x$. A questo punto questa equazione ci dà queste due informazioni: la pendenza della retta è $-\frac{3}{2}$ e l'ordinata all'origine (cioè l'ordinata del punto della retta che sta sull'asse y) è $\frac{5}{2}$. Si può osservare quindi che la retta passa per il punto $(0,\frac{5}{2})$ e, dato che per x=1 si ha y=1, passa anche per il punto (1,1) (come peraltro avevamo già osservato). Possiamo disegnarla.



 \blacktriangleright 14. Poniamo $(x_0, y_0) = (-1, 2)$ e la pendenza m = -2. L'equazione della retta è

$$y - y_0 = m(x - x_0)$$
 cioè $y - 2 = -2(x + 1)$ e quindi $y = -2x$.

La retta passa evidentemente per l'origine.

▶ 15. Non serve ricordare l'equazione generale di una retta per due punti, basta quella per un punto. La condizione di passaggio per il primo punto porta a scrivere l'equazione

$$y + 2 = m(x - 1).$$

 $[\]overline{}^1$ Si potrebbe distinguere tra primo quadrante che contiene il bordo e primo quadrante che non contiene il bordo (o magari che contiene solo una parte del bordo). Ovviamente il primo è caratterizzato dall'avere le due componenti ≥ 0 , mentre il secondo da componenti > 0.

Ora il passaggio per il secondo punto porta a dire che deve essere

$$3+2=m(-4-1)$$
 da cui $m=\frac{3+2}{-4-1}=-1$.

Allora, sostituendo la m trovata nella prima equazione, l'equazione cercata è

$$y + 2 = -(x - 1)$$
 cioè $y = -x - 1$.

▶ 16. Basta procurarci la pendenza e poi l'esercizio è analogo ai precedenti. La pendenza della retta parallela (che coincide con quella della retta che stiamo cercando) la possiamo ottenere scrivendo l'equazione in forma esplicita, cioè $y = \frac{-2x-4}{3} = -\frac{2}{3}x - \frac{4}{3}$. Quindi $m = -\frac{2}{3}$. Allora l'equazione della retta è

$$y + 2 = -\frac{2}{3}(x - 1).$$

▶ 17. Basta trovare la pendenza delle due rette e vedere se sono uguali. Scriviamo le due equazioni in forma esplicita:

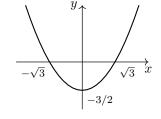
$$y = \frac{5 - 2x}{3}$$
 e $y = \frac{1 - 4x}{6}$.

Per entrambe si ha quindi $m=-\frac{2}{3}$. Pertanto le due rette sono parallele.

▶ Parabole

18. L'equazione è $-x^2 + 2y + 3 = 0$.

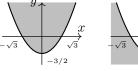
Scriviamo l'equazione esplicitando la y: $y=\frac{1}{2}x^2-\frac{3}{2}$. Si tratta di una parabola con asse coincidente con l'asse y, concavità rivolta verso l'alto, ordinata all'origine $-\frac{3}{2}$ (quindi vertice in $(0,-\frac{3}{2})$). Le intersezioni con l'asse x si trovano ponendo y=0 e cioè con $\frac{1}{2}x^2-\frac{3}{2}=0$, da cui $x^2=3$ e infine $x=\pm\sqrt{3}$. La parabola è raffigurata a fianco.



Per quanto riguarda le possibili disequazioni, consideriamo ad esempio le due

$$-x^2 + 2y + 3 > 0$$
 e $-x^2 + 2y + 3 < 0$.

La prima equivale alla $y>\frac{1}{2}x^2-\frac{3}{2}$ e questa individua la regione che sta al di sopra della parabola, bordo escluso (qui a fianco a sinistra). La seconda equivale alla $y\leq \frac{1}{2}x^2-\frac{3}{2}$ e individua la regione che sta al di sotto della parabola, bordo incluso (qui a fianco a destra). Sono immediati gli altri casi possibili.

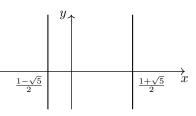


19. L'equazione è $x^2 - x - 1 = 0$.

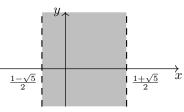
L'equazione è di secondo grado in una variabile, ma attenzione che la domanda è di disegnare l'insieme delle sue soluzioni *nel piano*. Risolvendola come tutte le disequazioni di secondo grado, possiamo cercare le soluzioni con la formula risolutiva e cioè

$$x = \frac{1 \pm \sqrt{5}}{2}$$
 , che significa $x = \frac{1 - \sqrt{5}}{2}$ oppure $x = \frac{1 + \sqrt{5}}{2}$.

Nel piano la prima individua una retta di ascissa $\frac{1-\sqrt{5}}{2}$ e la seconda una retta di ascissa $\frac{1+\sqrt{5}}{2}$. Si tratta quindi di due rette verticali. L'insieme delle soluzioni dell'equazione iniziale è quindi l'insieme dei punti del piano che stanno sull'una o sull'altra retta. L'insieme è raffigurato a fianco.

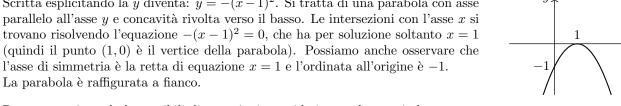


Consideriamo ora ad esempio la disequazione $x^2-x-1<0$. Le sue soluzioni sono i valori interni alle radici dell'equazione corrispondente, cioè sono le $\frac{1-\sqrt{5}}{2}< x<\frac{1+\sqrt{5}}{2}$. Questa doppia disequazione individua nel piano tutti i punti con ascissa compresa tra i due valori e quindi tutti i punti che stanno "all'interno" delle due rette, rette escluse. A fianco ho raffigurato in grigio questo insieme.



20. L'equazione è $-x^2 + 2x - y - 1 = 0$.

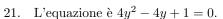
Scritta esplicitando la y diventa: $y = -(x-1)^2$. Si tratta di una parabola con asse parallelo all'asse y e concavità rivolta verso il basso. Le intersezioni con l'asse x si trovano risolvendo l'equazione $-(x-1)^2=0$, che ha per soluzione soltanto x=1(quindi il punto (1,0) è il vertice della parabola). Possiamo anche osservare che l'asse di simmetria è la retta di equazione x = 1 e l'ordinata all'origine è -1.



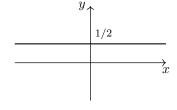
Per quanto riguarda le possibili disequazioni, consideriamo ad esempio la

$$-x^2 + 2x - y - 1 \ge 0.$$

Essa equivale alla $y \leq -(x-1)^2$ e questa individua la regione che sta al di sotto della parabola, bordo incluso, che è raffigurata a fianco. Sono immediati gli altri casi.



L'equazione è di secondo grado nella variabile y. Per risolverla possiamo usare la formula risolutiva delle equazioni di secondo grado o più semplicemente possiamo osservare che il polinomio è il quadrato di un binomio e quindi riscrivere l'equazione nella forma $(2y-1)^2=0$. Da questa si ricava che la soluzione (unica) è $y=\frac{1}{2}$. Quest'ultima individua nel piano la retta di ordinata $\frac{1}{2}$. Si tratta quindi di una retta orizzontale. L'insieme delle soluzioni dell'equazione iniziale è quindi l'insieme dei punti del piano che stanno su questa retta. L'insieme è raffigurato a fianco.



Tra le possibili disequazioni consideriamo

$$4y^2 - 4y + 1 > 0$$
 e $4y^2 - 4y + 1 \le 0$.

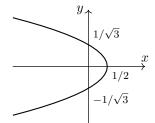
Esse equivalgono rispettivamente alle

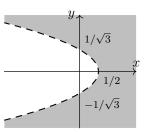
$$(2y-1)^2 > 0$$
 e $(2y-1)^2 \le 0$.

Le soluzioni della prima sono le $y \neq \frac{1}{2}$ e quindi l'insieme del piano che essa individua è l'insieme dei punti che non stanno sulla retta. Le soluzioni della seconda sono invece le $y=\frac{1}{2}$ e quindi l'insieme del piano che essa individua è nuovamente l'insieme dei punti della retta (è chiaro che le soluzioni di $(2y-1)^2 \le 0$ sono le stesse dell'equazione $(2y-1)^2=0$).

22. L'equazione è $2x + 3y^2 - 1 = 0$.

Qui conviene esplicitare la x: diventa: $x=-\frac{3}{2}y^2+\frac{1}{2}$. Si tratta di una parabola con asse parallelo all'asse x, concavità rivolta verso sinistra, ascissa all'origine $\frac{1}{2}$. Le intersezioni con l'asse y si trovano ponendo x=0 e cioè con $-\frac{3}{2}y^2+\frac{1}{2}=0$, da cui $3y^2 = 1$ e infine $y = \pm \frac{1}{\sqrt{3}}$. L'asse di simmetria è quindi l'asse x e il vertice è in $(\frac{1}{2}, 0)$. La parabola è raffigurata qui sotto a sinistra.





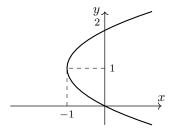
Per quanto riguarda le possibili disequazioni, consideriamo ad esempio la

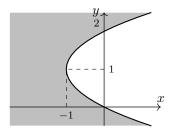
$$2x + 3y^2 - 1 > 0.$$

Essa equivale alla $x > -\frac{3}{2}y^2 + \frac{1}{2}$ e questa individua la regione che sta alla destra della parabola, bordo escluso (raffigurata sopra a destra). Sono immediati gli altri casi.

23. L'equazione è $y^2 - x - 2y = 0$.

Ricavando la x otteniamo $x = y^2 - 2y$, cioè x = y(y-2). Si tratta quindi di una parabola con asse orizzontale, concavità rivolta verso destra, che interseca l'asse y per y=0 oppure y=2. L'asse di simmetria è la retta di equazione y=1 e il vertice è in (-1,1). È raffigurata qui sotto a sinistra.





Per quanto riguarda le possibili disequazioni, consideriamo ad esempio la

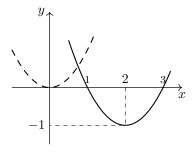
$$y^2 - x - 2y \ge 0.$$

Ricavando la x otteniamo $x \le y^2 - 2y$, e cioè $x \le y(y-2)$. Quest'ultima individua i punti del piano che stanno alla sinistra della parabola, parabola inclusa, come raffigurato sopra a destra.

▶ 24. L'equazione si può riscrivere come $y = x^2 - 4x + 3$ ed è chiaro che le soluzioni formano una parabola. Possiamo dire senza troppa fatica che questa parabola ha asse di simmetria verticale e concavità rivolta verso l'alto. Possiamo dire infine che la parabola interseca l'asse y, dato che l'equazione $x^2 - 4x + 3 = 0$ ha due soluzioni distinte, in 1 e 3. Pertanto possiamo anche dire che l'asse di simmetria è la retta x = 2. Completando il quadrato sulle x possiamo riscrivere l'equazione come

$$y = x^2 - 4x + 4 - 4 + 3$$
 , $y = (x - 2)^2 - 1$, $y + 1 = (x - 2)^2$.

Quindi la parabola in questione si ottiene dalla parabola di equazione $y = x^2$ con una traslazione che porta il vertice dall'origine al punto (2, -1).

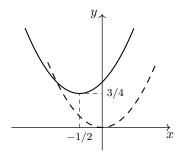


25. L'equazione si può riscrivere come $y=x^2+x+1$ ed è chiaro che le soluzioni formano una parabola. Possiamo dire che questa parabola ha asse di simmetria verticale e concavità rivolta verso l'alto. Inoltre la parabola non interseca l'asse y, dato che questa volta l'equazione $x^2+x+1=0$ non ha soluzioni. Faccio notare che la mancanza di soluzioni non consente di capire dove sta l'asse di simmetria. Senza ulteriori indagini e senza ricordare eventuali formule che forniscono il vertice o l'asse di simmetria non possiamo dire di più.

Completando il quadrato sulle x possiamo riscrivere l'equazione come

$$y = x^2 + x + \frac{1}{4} - \frac{1}{4} + 1 \quad \text{cioè} \quad y = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4} \quad \text{e infine} \quad y - \frac{3}{4} = \left(x + \frac{1}{2}\right)^2.$$

Ora si capisce che la parabola in questione si ottiene dalla parabola di equazione $y=x^2$ con una traslazione che porta il vertice dall'origine al punto $\left(-\frac{1}{2},\frac{3}{4}\right)$.

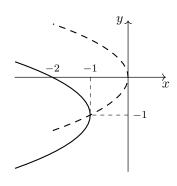


26. L'equazione si può riscrivere come $x=-y^2-2y-2$ e le soluzioni formano una parabola con asse orizzontale e concavità rivolta verso sinistra. La parabola non interseca l'asse x dato che l'equazione $y^2+2y+2=0$ non ha soluzioni. Anche qui per determinare il vertice usiamo il completamento del quadrato.

Possiamo scrivere $x = -(y^2 + 2y + 2)$ e quindi

$$x = -(y^2 + 2y + 1 + 1)$$
, $x = -(y + 1)^2 - 1$ e infine $x + 1 = -(y + 1)^2$.

Quest'ultima ci dice che il vertice della parabola è nel punto (-1, -1). La parabola si ottiene quindi dalla parabola di equazione $x = -y^2$ con una traslazione che porta il vertice dall'origine al punto (-1, -1).



▶ Circonferenze

27. Basta ricordare che l'equazione della circonferenza di centro x_0, y_0 e raggio r è $(x - x_0)^2 + (y - y_0)^2 = r^2$. Quindi nel nostro caso l'equazione è

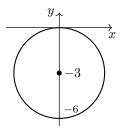
$$(x-1)^2 + (y+2)^2 = 9.$$

▶ 28. L'equazione data è $x^2 + y^2 + 6y = 0$.

Per completare il quadrato in y possiamo aggiungere e togliere 9. Si ha

$$x^{2} + y^{2} + 6y + 9 - 9 = 0$$
 cioè $x^{2} + (y+3)^{2} = 9$,

che è l'equazione della circonferenza di centro (0, -3) e raggio 3.

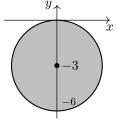


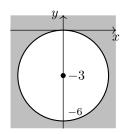
Per quanto riguarda le possibili disequazioni, consideriamo ad esempio le due

$$x^2 + y^2 + 6y \le 0$$
 e $x^2 + y^2 + 6y > 0$

La prima equivale ovviamente alla $x^2 + (y+3)^2 \le 9$ e questa individua la regione che sta all'interno della circonferenza, bordo incluso, cioè quello che la geometria chiama il cerchio di centro (0, -3) e raggio 3 (figura sotto a sinistra).

La seconda equivale alla $x^2 + (y+3)^2 > 9$ e questa individua la regione che sta all'esterno della circonferenza, bordo escluso (figura sotto a destra).





29. L'equazione data è $x^2 + y^2 + 2x - 4y + 1 = 0$.

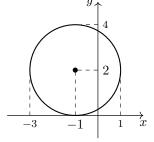
Completiamo i due quadrati. Si ha

$$x^{2} + 2x + 1 + y^{2} - 4y + 4 - 1 - 4 + 1 = 0$$
 cioè $(x+1)^{2} + (y-2)^{2} = 4$,

che è l'equazione della circonferenza di centro (-1,2) e raggio 2.

Si noti che in generale una circonferenza di equazione $(x-x_0)^2 + (y-y_0)^2 = r^2$ si "estende" sulle x tra i valori estremi $x_0 \pm r$ e sulle y tra i valori estremi $y_0 \pm r$. La nostra si estende quindi sulle x tra -3 e 1 e sulle y tra 0 e 4.

Per quanto riguarda le possibili disequazioni, consideriamo ad esempio la



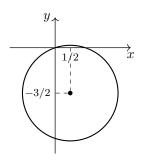
$$x^2 + y^2 + 2x - 4y + 1 > 0.$$

Essa equivale ovviamente alla $(x+1)^2+(y-2)^2>4$ e questa individua la regione che sta all'esterno della circonferenza, bordo escluso. Sono immediati gli altri casi.

30. Completiamo i quadrati nell'equazione $x^2 + y^2 - x + 3y = 0$. Si ha

$$x^2 - x + \frac{1}{4} + y^2 + 3y + \frac{9}{4} - \frac{1}{4} - \frac{9}{4} = 0 \quad \text{cioè} \quad \left(x - \frac{1}{2}\right)^2 + \left(y + \frac{3}{2}\right)^2 = \frac{10}{4},$$

che è l'equazione della circonferenza di centro $(\frac{1}{2}, -\frac{3}{2})$ e raggio $\frac{\sqrt{10}}{2}$. I vari casi con le disequazioni sono ormai chiari.

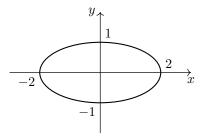


Ellissi

L'equazione $\frac{x^2}{4} + y^2 = 1$ individua un'ellisse con centro nell'origine.

I semiassi sono a = 2 sulle $x \in b = 1$ sulle y.

Per trovare i semiassi basta ricordare il significato dei parametri a e b nell'equazione generale, oppure fare così: sulle x: si pone y=0 nell'equazione e si trova $\frac{x^2}{4} = 1$, cioè $x^2 = 4$, da cui |x| = 2 (a = 2); sulle y: si pone x = 0 nell'equazione e si trova $y^2 = 1$, da cui |y| = 1 (b = 1). L'ellisse è raffigurato a fianco.



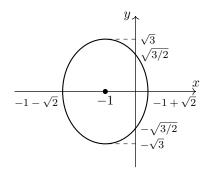
Le relative disequazioni si trattano in modo ovvio, molto simile a quello delle circonferenze.

32. L'equazione $\frac{(x+1)^2}{2} + \frac{y^2}{3} = 1$ individua un'ellisse con centro nel punto (-1,0).

Troviamo i semiassi: essi sono $a = \sqrt{2}$ e $b = \sqrt{3}$. Si noti che a < b e quindi l'ellisse è più schiacciato lungo le x che lungo le y.

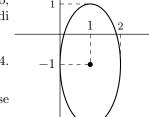
Per trovare le intersezioni dell'ellisse con l'asse x poniamo y=0 nell'equazione iniziale. L'equazione diventa $\frac{(x+1)^2}{2}=1$, cioè $(x+1)^2=2$, da cui $|x+1|=\sqrt{2}$. Le intersezioni dell'ellisse con l'asse x sono quindi $x=-1\pm\sqrt{2}$. Ponendo invece x=0 si trovano le intersezioni dell'ellisse con l'asse y, e cioè $y = \pm \sqrt{\frac{3}{2}}$. L'ellisse è raffigurato a fianco.

Si osservi che in generale un'ellisse di equazione $\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$ si "estende" sulle x tra i valori estremi $x_0 \pm a$ e sulle y tra i valori estremi $y_0 \pm b$. La nostra si estende quindi sulle x tra $-1 \pm \sqrt{2}$ e sulle y tra $\pm \sqrt{3}$.



33. Questo caso è un po' più difficile dei due precedenti in quanto l'equazione non è già in una delle forme standard che permettono l'immediato riconoscimento. Comunque possiamo senz'altro dire che potrebbe individuare un'ellisse.³

Occorre ricondurre l'equazione alla forma standard per capire qual è il centro e quali sono i semiassi. La tecnica è sempre quella del completamento dei quadrati. Il quadrato relativo alla y è già pronto, occorre completare quello della x. Anche se non necessario, può essere conveniente raccogliere in questi casi il coefficiente di x^2 . Trasformiamo quindi l'equazione in



$$4(x^2-2x)+(y+1)^2=0 \quad , \quad 4(x^2-2x+1-1)+(y+1)^2=0 \quad , \quad 4(x-1)^2+(y+1)^2=4.$$

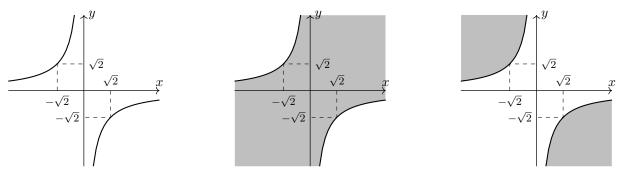
Dividendo tutto per 4 otteniamo $(x-1)^2 + \frac{(y+1)^2}{4} = 1$, che è l'equazione di un'ellisse di centro (1,-1) e semiassi a=1 e b=2. L'ellisse si estende sulle x tra 0 e 2 (1 ± 1) e sulle y tra -3 e 1 (-1 ± 2) . È raffigurata a fianco.⁴

 $^{^2}$ Si osservi che la circonferenza passa per l'origine, quindi la circonferenza incontra l'asse x in due punti, di cui uno è l'origine. Si noti anche che infatti il raggio $\frac{\sqrt{10}}{2}\approx 1.58$ è maggiore di 1.5. ³Questo perché i termini quadratici x^2 e y^2 sono presenti entrambi ma con coefficienti diversi.

⁴Le intersezioni con gli assi, che non ho riportato nella figura per mancanza di spazio, sono queste: con l'asse y per $x=1\pm\frac{\sqrt{3}}{2}$ e con l'asse x per y = -1.

Iperboli

L'equazione xy + 2 = 0, cioè xy = -2, individua un'iperbole con asintoti gli assi cartesiani e i rami nel secondo e quarto quadrante. È raffigurato qui sotto a sinistra.



Per quanto riguarda le possibili disequazioni, consideriamo ad esempio la xy > -2. Per decidere quale parte di piano essa individua possiamo fare così: l'origine soddisfa la disequazione, che risulta 0 > -2. Allora l'origine appartiene alla regione e così tutti i punti che stanno dalla stessa parte dell'origine rispetto all'iperbole. La regione è quella che contiene gli assi cartesiani. I punti del bordo (quelli che stanno sull'iperbole) non sono compresi. La regione è rappresentata sopra in centro.

Se invece avessimo ad esempio la disequazione $xy \leq -2$, allora la regione da essa individuata sarebbe quella dei punti che non stanno dalla stessa parte dell'origine rispetto all'iperbole e quindi la regione raffigurata in grigio nella figura sopra a destra (il bordo è questa volta compreso).

35. L'equazione (x-1)(y+1)+1=0, cioè (x-1)(y+1)=-1, individua un'iperbole con centro nel punto (1,-1)e quindi con asintoti dati dalle rette di equazione x = 1 e y = -1, con rami nel secondo e quarto quadrante (rispetto al centro). L'iperbole passa per l'origine, dato che (0,0) soddisfa l'equazione. È raffigurato sotto a sinistra.

Per quanto riguarda le possibili disequazioni, consideriamo ad esempio la $(x-1)(y+1) \leq -1$. Il centro (1,-1) non soddisfa questa volta la disequazione, 5 che risulta $0 \le -1$. Allora il centro non appartiene alla regione e così tutti i punti che stanno dalla stessa parte del centro rispetto all'iperbole. La regione è quella che non contiene gli asintoti ed è rappresentata a destra. I punti del bordo sono compresi.

Ovviamente se la disequazione fosse ad esempio (x-1)(y+1) > -1 allora la regione sarebbe quella che contiene gli asintoti dell'iperbole, con bordi esclusi.

36. L'equazione $x^2-y^2=\frac{1}{4}$ deve essere anzitutto riscritta nella forma standard $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ che in questo caso è $\frac{x^2}{1/4}-\frac{y^2}{1/4}=1$. Essa individua un'iperbole con assi di simmetria dati dagli assi cartesiani e asintoti le rette di equazione y=x e y=-x. I rami dell'iperbole stanno a destra e a sinistra dell'origine. L'iperbole interseca l'asse x nei punti $(\frac{1}{2},0)$ e $(-\frac{1}{2},0)$ e non interseca l'asse y. È raffigurata sotto a sinistra.

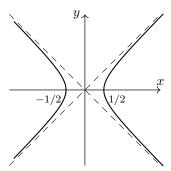
Per quanto riguarda le possibili disequazioni, consideriamo ad esempio la $x^2 - y^2 > \frac{1}{4}$. L'origine non soddisfa la disequazione, che risulta $0 > \frac{1}{4}$. Allora l'origine non appartiene alla regione e così tutti i punti che stanno dalla stessa

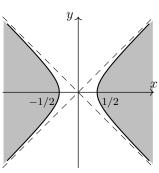
⁵Si noti che per verificare la disuguaglianza in un punto questa volta non scelgo l'origine. In generale conviene scegliere come "punto di test" il centro dell'iperbole. In questo caso poi l'origine è soluzione dell'equazione e quindi non mi servirebbe per stabilire la verità o falsità di una disuguaglianza.

⁶Può essere comodo ricordare che le pendenze degli asintoti si ottengono con $m=\pm\frac{b}{a}$.

⁷Per trovare i punti di intersezione con gli assi basta come sempre porre x=0 e y=0. Qui ponendo y=0 si ottiene $x^2=\frac{1}{4}$, da cui $|x|=\frac{1}{2}$, mentre non si hanno soluzioni se x=0.

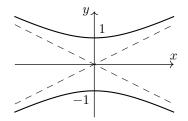
parte dell'origine rispetto all'iperbole. La regione è quella che non contiene gli asintoti ed è rappresentata a destra. I punti del bordo non sono compresi.

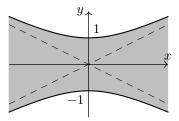




37. L'equazione $\frac{x^2}{4} - y^2 = -1$ è già nella forma standard $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$. Essa individua un'iperbole con assi di simmetria dati dagli assi cartesiani e asintoti le rette di equazione $y = \frac{x}{2}$ e $y = -\frac{x}{2}$. I rami dell'iperbole stanno al di sopra e al di sotto dell'origine. L'iperbole inteseca l'asse y nei punti (0,1) e (0,-1) e non interseca l'asse x. È raffigurata sotto a sinistra.

Per quanto riguarda le possibili disequazioni, consideriamo ad esempio la $\frac{x^2}{4} - y^2 \ge -1$. L'origine soddisfa la disequazione, che risulta $0 \ge -1$. Allora l'origine appartiene alla regione e così tutti i punti che stanno dalla stessa parte dell'origine rispetto all'iperbole. La regione è quella che contiene gli asintoti ed è rappresentata a destra. I punti del bordo sono compresi.





▶ 38. L'equazione è xy - 2x + y - 1 = 0.

Si può anzitutto osservare che l'equazione non è certamente quella di una circonferenza o di un'ellisse, né quella di una parabola dei tipi che abbiamo considerato.

Raccogliendo tra i primi due termini l'equazione diventa

$$x(y-2) + y - 1 = 0.$$

Possiamo procurarci un secondo raccoglimento scrivendo

$$x(y-2) + y - 2 + 1 = 0$$
 e cioè $(x+1)(y-2) = -1$.

Questa è l'equazione di un'iperbole di centro il punto (-1,2), asintoti dati dalle rette di equazione x=-1 e y=2 e rami che stanno nei corrispondenti del secondo e quarto quadrante (rispetto al centro). È raffigurata nella figura di sinistra dell'ultima pagina.

39. L'equazione è $2x^2 - y^2 - 4x - 2y - 3 = 0$.

Qui possiamo completare i quadrati. Conviene prima raccogliere il 2 sulle x:

$$2(x^2-2x)-(y^2+2y)=3 \quad \text{quindi} \quad 2(x^2-2x+1-1)-(y^2+2y+1-1)=3 \quad \text{cioè} \quad 2(x-1)^2-(y+1)^2=4.$$

Ora, dividendo tutto per 4 si ottiene

$$\frac{(x-1)^2}{2} - \frac{(y+1)^2}{4} = 1,$$

che è l'equazione dell'iperbole di centro (1,-1), asintoti di pendenze $m=\pm \frac{b}{a}=\pm \frac{2}{\sqrt{2}}=\pm \sqrt{2}$, con rami che stanno a sinistra e a destra del centro. È raffigurata nella figura in centro della pagina seguente.

⁸Anche qui basta ricordare che le pendenze degli asintoti si ottengono con $m=\pm\frac{b}{a}$, quindi in questo caso si ha $m=\pm\frac{1}{2}$.

⁹Ponendo x=0 si ottiene $y^2=1$, da cui |y|=1, mentre non si hanno soluzioni se y=0.

40. L'equazione è $2x^2 - 3y^2 + 8x + 18y - 13 = 0$.

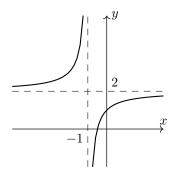
Come nell'esercizio precedente procediamo con il completamento dei quadrati.

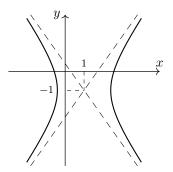
$$2(x^2+4x)-3(y^2-6y)=13 \quad \text{quindi} \quad 2(x^2+4x+4-4)-3(y^2-6y+9-9)=13 \quad \text{cioè} \quad 2(x+2)^2-3(y-3)^2=-6.$$

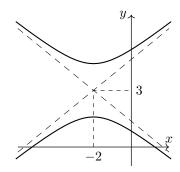
Dividendo tutto per 6 si ottiene

$$\frac{(x+2)^2}{3} - \frac{(y-3)^2}{2} = -1.$$

Si tratta dell'iperbole di centro (-2,3), asintoti di pendenze $m=\pm\frac{b}{a}=\pm\frac{\sqrt{2}}{\sqrt{3}}$, con rami che stanno al di sotto e al di sopra del centro. È raffigurata qui sotto a destra.







B. Funzioni

La domanda chiede di verificare se le scritture proposte indicano effettivamente una funzione. Occorre quindi verificare se, per ogni valore di quello che è dato come dominio, l'espressione che definisce la funzione identifica un unico valore che appartiene effettivamente a quello che è dato come codominio.

La scrittura è

$$f: \mathbb{N} \to \mathbb{N}, \text{ con } f(n) = \frac{n+1}{2}.$$

Per ogni numero naturale n l'espressione $\frac{n+1}{2}$ ha senso ma non è detto che tale valore sia un numero naturale, come invece dovrebbe essere dato che il codominio è $\mathbb N$. Infatti se n è dispari n+1 è pari e dividendolo per 2 si ha un numero naturale, ma se n è pari n+1 è dispari e quindi la frazione $\frac{n+1}{2}$ non è un numero naturale. Pertanto la scrittura non è corretta, nel senso che non definisce correttamente una funzione, almeno non una funzione a valori in $\mathbb N$.

La scrittura è

$$f: \mathbb{N} \to \mathbb{Z}$$
, con $f(n) = n - n^2$.

Questa volta la scrittura definisce correttamente una funzione. Infatti per ogni numero naturale n il valore fornito dall'espressione $n-n^2$ è certamente un numero intero, eventualmente negativo. ¹⁰

3. La scrittura è

$$f: \mathbb{Z} \to \mathbb{N}$$
, con $f(z) = z^2 - z$.

Se z=0 si ha f(z)=0 e già questo basta per dire che la scrittura non è corretta, dato che il codominio è indicato come \mathbb{N} e \mathbb{N} non comprende lo 0. Possiamo anche osservare che anche f(1)=0. In realtà questi sono gli unici due casi che contrastano la validità della scrittura, dato che $z^2 - z \ge 1$ per ogni $z \in \mathbb{Z} \setminus \{0, 1\}$. 11

4. La scrittura è

$$f: \mathbb{N} \to \mathbb{N}, \text{ con } f(n) = \frac{n^2 + n}{2}.$$

Si tratta di vedere se $\frac{n^2+n}{2}$ è un numero naturale per ogni $n \in \mathbb{N}$ o, in altre parole, se n^2+n è pari per ogni $n \in \mathbb{N}$. Non è difficile scoprire che è vero. Basta pensare che è vera la seguente proposizione: " n^2 è pari se e solo se n è pari". Lo studente provi a darne una dimostrazione di un qualche rigore. Allora, se n è pari n^2 è pari e $n^2 + n$ è pari in quanto somma di due numeri pari; se invece se n è dispari n^2 è dispari e $n^2 + n$ è pari in quanto somma di due numeri dispari.

 $^{^{10}}$ Anzi, possiamo dire che gli interi che si ottengono in questo modo sono tutti non positivi, dato che f(1) = 0 e $f(n) = n - n^2 < 0$ se \geq 2. Quindi l'immagine di questa funzione è un sottoinsieme degli interi non positivi. La scrittura, volutamente molto formale per abituare gli studenti a queste notazioni, vuole dire ovviamente "per ogni numero intero

diverso da 0 e da 1".

Pertanto $n^2 + n$ è sempre pari e quindi divisibile per 2. Quindi la scrittura definisce correttamente una funzione da \mathbb{N} a \mathbb{N} .

- ▶ 5. La scrittura $f(\mathbb{N}) \subset \mathbb{P}$ significa che $f(\mathbb{N})$ (l'immagine della funzione f) è sottoinsieme di \mathbb{P} , cioè che tutti i valori che la funzione f assume sono numeri pari. Osserviamo che è vera la seguente proposizione: " n^3 è pari se e solo se n è pari". Pertanto $n^3 + n$ è sempre pari, dato che è la somma o di due numeri pari o di due numeri dispari. Quindi è vero che $f(\mathbb{N}) \subset \mathbb{P}$.
- ▶ 6. Si vede subito che f non è iniettiva: infatti se consideriamo ad esempio l'equazione $z^2 + z = 0$, essa ha per soluzioni z = 0 oppure z = -1, che sono due numeri interi distinti, e quindi ci sono interi distinti sui quali f assume lo stesso valore. Lascio allo studente l'ulteriore esercizio di trovare tutte le coppie di interi distinti sui quali f assume lo stesso valore.

Per quanto riguarda la seconda domanda, se cioè f sia suriettiva, la risposta è certamente no, dato che (vedi anche esercizi precedenti) $z^2 + z$ è pari se z è positivo (e in generale $|z^2 + z|$ è pari o nullo qualunque sia z intero). Quindi la funzione assume soltanto valori pari e pertanto non è suriettiva.

Proviamo che $f(z) \ge 0$ per ogni $z \in \mathbb{Z}$. Basta scrivere f(z) = z(z+1). Ora se $z \ge 0$ i due fattori sono maggiori o uguali a zero e quindi il prodotto lo è. Se invece $z \le -1$ i due fattori sono minori o uguali a zero e quindi il prodotto è ancora maggiore o uguale a zero.

Per ogni z si ha

$$f(-z) = (-z)(-z+1) = z(z-1)$$
 e analogamente $f(z-1) = (z-1)z$.

Il punto successivo chiede di utilizzare il fatto che f(-z) = f(z-1) per dedurre che l'immagine della funzione, cioè $f(\mathbb{Z})$, si ottiene dall'immagine di \mathbb{N} aggiungendo lo 0. Anzitutto la funzione assume il valore 0, come già visto. Tale valore non sta in $f(\mathbb{N})$ e quindi va comunque aggiunto. Poi sugli interi positivi le immagini sono le stesse dei naturali, dato che gli interi positivi sono i numeri naturali. Infine, sugli interi negativi, ci aiuta appunto l'ultima identità trovata, cioè che f(-z) = f(z-1). Infatti avremo che f(-n) = f(n-1) e quindi i valori associati agli interi negativi li troviamo già con i naturali.

Tenendo in considerazione che è sempre $f(z) \ge 0$ e che f assume valori pari, possiamo dire intanto che $f^{-1}(B) = f^{-1}\{0, 2, 4, 6\}$. Ora $f^{-1}\{0\} = \{-1, 0\}$.

Poi $f^{-1}\{2\}$ si trova risolvendo l'equazione $z^2+z=2$, cioè $z^2+z-2=0$, cioè (z-1)(z+2)=0, e quindi $f^{-1}\{2\}=\{-2,1\}$.

Ancora $f^{-1}\{4\}$ si trova risolvendo l'equazione $z^2 + z = 4$, cioè $z^2 + z - 4 = 0$, che questa volta non ha soluzioni intere. Infine $f^{-1}\{6\}$ si trova risolvendo l'equazione $z^2 + z = 6$, cioè $z^2 + z - 6 = 0$, cioè (z - 2)(z + 3) = 0, che ci dà $f^{-1}\{6\} = \{-3, 2\}$.

Quindi in definitiva abbiamo $f^{-1}(B) = \{-3, -2, -1, 0, 1, 2\}.$

▶ 7. Come visto in precedenza, la funzione, se definita in tutti gli interi, assume il valore zero, che non è naturale. La funzione sarà definita correttamente se risulta $f(z) \ge 1$ per ogni z del dominio. Consideriamo quindi la disequazione $f(z) \ge 1$, cioè $z^2 - z \ge 1$, cioè $z^2 - z - 1 \ge 0$.

Risolvendola in \mathbb{R} avremmo i valori esterni a $\frac{1\pm\sqrt{5}}{2}$. Questi due valori sono compresi tra -1 e 0 (quello negativo) e tra 1 e 2 l'altro. Pertanto, nei numeri interi, la disuguaglianza è verificata per $z \leq -1$ oppure per $z \geq 2$, quindi nell'insieme $\mathbb{Z} \setminus \{0,1\}$.

Proviamo che nel dominio $f(z) \ge 2$ per ogni z. Consideriamo la disuguaglianza $z^2 - z \ge 2$, cioè $z^2 - z - 2 \ge 0$, cioè $(z+1)(z-2) \ge 0$. Per $z \ge 2$ sono entrambi ≥ 0 , per $z \le -1$ sono entrambi ≤ 0 , e quindi la disequazione è verificata in tutto il dominio, cioè per tutti gli interi diversi da 0 e da 1.

Si ha facilmente $f\{-2, -1, 2\} = \{2, 6\}$.

Osservando che f(z) è anche in questo caso un numero pari, possiamo dire che $f^{-1}\{1,2,3\} = f^{-1}\{2\}$. Dall'equazione f(z) = 2, cioè $z^2 - z - 2 = 0$ si ottengono le soluzioni z = -1 oppure z = 2. Pertanto $f^{-1}(B) = \{-1,2\}$.

¹²Il prodotto di numeri dispari è dispari e il prodotto di numeri pari è pari.

▶ 8. Le due funzioni f e g hanno entrambe \mathbb{N} sia come dominio sia come codominio e quindi non c'è nessun problema nel costruire le due funzioni composte $f \circ g$ e $g \circ f$. Si ha

$$(f \circ g)(n) = f(g(n)) = 2(2n-1)^2 + 1 = 8n^2 - 8n + 3$$

 \mathbf{e}

$$(g \circ f)(n) = g(f(n)) = 2(2n^2 + 1) - 1 = 4n^2 + 1.$$

Entrambe le funzioni composte hanno come dominio e come codominio $\mathbb{N}.$

▶ 9. La funzione composta $f \circ g = f(g)$ ha come dominio \mathbb{N} (dominio di g) ed è ben definita poiché il codominio di g coincide con il dominio di f (infatti abbiamo $g : \mathbb{N} \to \mathbb{Z}$ e $f : \mathbb{Z} \to \mathbb{N}$). L'espressione di $f \circ g$ è

$$(f \circ g)(n) = f(g(n)) = |n - n^2| + 1$$
 e $f \circ g : \mathbb{N} \to \mathbb{N}$.

Passiamo alla funzione composta $g \circ f = g(f)$. Essa ha come dominio \mathbb{Z} (dominio di f) ed è ben definita poiché il codominio di f coincide con il dominio di g (infatti abbiamo $f : \mathbb{Z} \to \mathbb{N}$ e $g : \mathbb{N} \to \mathbb{Z}$). L'espressione di $g \circ f$ è

$$(g \circ f)(z) = g(f(z) = |z| + 1 - (|z| + 1)^2$$
 e $g \circ f : \mathbb{Z} \to \mathbb{Z}$.